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By manipulating a set of ion beams upstream of a target, it is possible to arrange for a smoother
deposition pattern, so as to achieve more uniform illumination of the target. A uniform energy de-
position pattern is important for applications including ion-beam-driven high energy density physics
and heavy-ion beam-driven inertial fusion energy (“heavy-ion fusion”). Here, we consider an ap-
proach to such smoothing that is based on rapidly “wobbling” each of the beams back and forth
along a short arc-shaped path, via oscillating fields applied upstream of the final pulse compression.
In this technique, uniformity is achieved in the time-averaged sense; this is sufficient provided the
beam oscillation timescale is short relative to the hydrodynamic timescale of the target implosion.
This work builds on two earlier concepts: elliptical beams applied to a distributed-radiator target
[D. A. Callahan and M. Tabak, Phys. Plasmas 7, 2083 (2000)]; and beams that are wobbled so as to
trace a number of full rotations around a circular or elliptical path [M. M. Basko, T. Schlegel, and
J. Maruhn, Phys. Plasmas 11, 1577 (2004).] Here we describe the arc-based smoothing approach,
and compare it to results obtainable using an elliptical-beam prescription. In particular, we assess
the potential of these approaches for minimization of azimuthal asymmetry, for the case of a ring
of beams arranged on a cone. It is found that, for small numbers of beams on the ring, the arc-
based smoothing approach offers superior uniformity. In contrast with the full-rotation approach,
arc-based smoothing remains usable when the geometry precludes wobbling the beams around a
full circle, e.g., for the X-target [E. Henestroza, B. G. Logan, and L. J. Perkins, Phys. Plasmas 18,
032702 (2011)] and some classes of distributed-radiator targets.

I. INTRODUCTION

A suitably shaped, smooth energy deposition pattern
is important for applications including ion-beam-driven
high energy density physics studies, and heavy-ion beam-
driven inertial fusion energy (Heavy-Ion Fusion).1–4 By
manipulating a set of ion beams upstream of a target, it
is possible to arrange for more uniform illumination of
the target, so as to achieve a smooth deposition profile.
This paper describes an approach to such smoothing that
is based on rapidly “wobbling” each ion beam back and
forth along a short arc-shaped path, via oscillating fields
applied upstream of the final pulse compression. In this
arc-based smoothing technique, uniformity is achieved in
the time-averaged sense; this is sufficient provided that
the beam oscillation timescale is short relative to the hy-
drodynamic timescale of the target implosion. This work
builds on two earlier concepts: elliptical beams applied to
a distributed-radiator target;5 and beams that are wob-
bled so as to trace a number of full rotations around a
circular or elliptical path6–14.

In the aforementioned applications, the ion beam pulse
is temporally compressed after exiting the accelerator via
a process called drift compression, analogous to chirped-
pulse compression of laser pulses. A head-to-tail velocity
gradient, or “tilt,” is imparted to the beam, which then
drifts for some distance, while the beam’s tail (nearly)
“catches up” with its head. Two variants are possi-
ble. In the first, the beam remains un-neutralized, and
the inward motion of the beam ends (in the co-moving
frame) is ultimately halted by the beam’s space-charge
(a stagnation of the inward flow); this yields a nearly
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FIG. 1. Wobbler geometry, showing a single beam in the
crossed-deflector system, the longitudinal bunch-compression
line, the final-focus quadrupole magnet array, and imping-
ing on the target. Both arc-wobbled and circularly-wobbled
illumination patterns are shown.

mono-energetic beam at the point of peak compression,
facilitating subsequent transverse focusing by minimiz-
ing chromatic effects. Alternatively, in neutralized drift
compression, the beam drifts through a plasma, wherein
electrons move so as to cancel out the beam’s self electric
field. This enables a much shorter ion pulse, but there is
no stagnation and hence the energy spread of the com-
pressed beam is greater (as expected from Liouville’s the-
orem). The latter variant is the basis of the new Neutral-
ized Drift Compression Experiment-II (NDCX-II) facility
at Lawrence Berkeley National Laboratory.15

Downstream of the pulse compression, the beam is fo-
cused onto the target by a final focusing system, typically
a magnetic quadrupole array or a strong solenoid (plasma
lenses have also been used). The temporal compression
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FIG. 2. (color online) Geometry of multiple beams converging
onto target along a cone, showing arc-wobbled aiming points.

also serves to multiply the frequency of the oscillations
imposed by the upstream wobbler, typically by factors of
order ten to fifty. For example, consider a case wherein
the beam pulse duration at the target is 1 ns, and ten pe-
riods of beam oscillation are desired to ensure that the os-
cillation period is sufficiently shorter than the implosion
time. Thus, the oscillation frequency of the transverse
beam motion at the target will be 10 GHz. If the beam
is compressed by a factor of twenty in its travel from the
wobbler to the target, the frequency of the wobbler will
be 0.5 GHz. Figure 1 depicts the overall geometry of this
approach, for a single beam.

Practical systems for driving inertial fusion energy tar-
gets will require tens of beams (some concepts require
about 200), so the overall facility layout can be greatly
simplified by arranging these beams on nested cones.
Most target concepts require one such set of cones on
each side of the target, but some, such as the X-target,16

are to be illuminated from a single side. This geometry
is shown in Fig. 2.

If one attempts to apply full-circle beam wobbling to
the X-target, the attached “secondary” focusing lens (for
the igniter beams) blocks the beam path; see Fig. 3. In
addition, the angle of incidence into the target is un-
suitable when (in the case shown) the beam is imping-
ing upon the lower portion of the target, since the beam
rapidly exits the target without heating enough material.
This latter issue also arises with other target concepts,
such as the distributed-radiator, that do not include ex-
ternal beam obstructions. The arc-wobbled approach re-
mains usable with such targets.

Some targets can benefit by beam “zooming,” that
is, shifting the beams’ aiming as the implosion pro-
ceeds. In a full-circle wobbler scenario, the amplitude of
the wobbler-driven deflections may be reduced, thereby
shrinking the circle on the target. For example, in a po-
lar direct drive scenario, the aiming of beams not pointed
directly at the target center can be shifted as the spher-
ical ablation surface moves inward, thereby minimizing
the beam power that fails to drive the implosion and
is wasted. In an arc-wobbler scenario, a steady inward
motion can be superimposed, producing a switchback ge-
ometry as shown in Fig. 4. For example, this technique
may be applied to the X-target, where it is important
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FIG. 3. (color online) Depiction of a full-circle-wobbled beam
impinging upon an X-target, showing interference with the
secondary-focus lens that enables focusing of a fast-ignition
ion beam. Even in the absence of such a lens, the beam enters
the target at an unsuitable angle when it is aimed at points
on the far side of the axis of symmetry. The arc-wobbled
approach avoids these issues by keeping the beam near the
upper arrow in the figure.

FIG. 4. Sketch of “switchback” geometry for two-harmonic
wobbler approach (see text).

to distribute the beam energy uniformly in the absorber,
and thus avoid local depletion of absorbing material and
enlargement of the ion range. The switchback is achieved
by gradually reducing the amplitude of the applied field
that provides the deflection along x, while ramping up a
slowly varying deflection in the −y direction (while re-
taining the second-harmonic oscillating deflection in y).

We compare the smoothness offered by the arc-
based smoothing approach to that obtainable using an
elliptical-beam prescription. In particular, we consider
the minimization of azimuthal asymmetry, for the case
of a ring of beams arranged on a cone. We have exam-
ined three variations of arc-based smoothing: wobbling
the beam along straight lines; along perfect circular arcs;
and along approximately circular arcs that are more read-
ily generated by practical hardware, in a process we label
“two-harmonic wobbling,” described below. We find the
illumination patterns from the last two prescriptions to
be almost indistinguishable from each other. For small
numbers of beams on the ring, the arc-based smoothing
approach (with circular or near-circular arcs) offers uni-
formity superior to that obtainable with elliptical beams.

The layout of this paper is as follows. Section II
describes the measures of nonuniformity used. Section
III presents the reference elliptical beam case,5 and a
variation with less elongated beams. Section IV de-
scribes the arc-based smoothing concept, and introduces
two-harmonic wobblers that yield approximately circu-
lar arcs. Section V displays a single two-harmonic arc-
wobbled beam, explains how the summed effect of the set
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of such beams is computed, and presents examples of the
uniformity that can be obtained using arc-based smooth-
ing. Finally, Section VI offers a discussion and considers
the applicability of beam smoothing techniques to vari-
ous classes of targets.

II. METRICS OF NONUNIFORMITY

For a cone of beams, the intensity pattern on a pla-
nar target surface forms an annulus, peaked at some
radius and falling off at greater and lesser radii. That
is, a surface plot of the intensity will resemble in ap-
pearance a volcano, while a contour plot will resemble
a ring. Here we consider three measures of nonunifor-
mity: a Fourier decomposition around the azimuth of
the radially-integrated intensity; a peak-to-valley rela-
tive variation around the “rim” of the volcano, suitably
defined; and a peak-to-valley relative variation of the ra-
dially integrated intensity.

For the modal metric, the mth cosine component of the
relative asymmetry in the beam energy fluence (energy
passing through a unit area) is, using conventional polar
(r, θ) coordinates:

Cm =

∫∞
0

∫ 2π

0
r cos(mθ)f [x(r, θ), y(r, θ)]dθdr∫∞

0

∫ 2π

0
rf [x(r, θ), y(r, θ)]dθdr

(1)

where the above form was chosen to make explicit the
fact that, in the program, the fluence f is evaluated,
for each smoothing scheme, in the Cartesian coordinate
space (x, y). In practice the integrals do not extend to
infinity, but rather until the intensity is negligible. The
sine component Sm is defined similarly.

For the peak-to-valley relative variation on the rim,
we first attempted to measure the fluence at the radius
of the nominal annulus (the radius of the aiming points
for the elliptical beam case, or the aiming point at the
middle of a “wobble” oscillation for the wobbled cases.
However, when multiple beams overlap it is common that
the peak intensity does not fall at that radius. Thus, we
employ a search to find the location of the actual peak
intensity, and (in keeping with the volcano metaphor)
define the “rim” radius rrim on which the nonuniformity
is measured to be the radius of that peak. It is possible to
make other choices for rrim; one that may yield a slightly
more smoothly varying measure would be to integrate
the intensity around θ, and define rrim as that radius at
which the result, or product of the result and the radius,
is maximized.

Once a choice for rrim has been made, the peak-to-
valley relative variation at rrim is defined as:

PTVrim = 2
maxθ f(rrim, θ)−minθ f(rrim, θ)

maxθ f(rrim, θ) + minθ f(rrim, θ)
(2)

(Note that some previous work, e.g., Ref. 10, has not
included, in their definition of peak-to-valley variation,
the factor of 2 that appears in this definition.)

For the peak-to-valley relative variation of the radially-
integrated intensity, we have:

f(θ) =

∫ ∞
0

rf(r, θ)dr (3)

PTVintegrated = 2
maxθ f(θ)−minθ f(θ)

maxθ f(θ) + minθ f(θ)
(4)

III. ELLIPTICAL BEAM REFERENCE CASE

We begin with the elliptical beams described in the
overview paper of Callahan and Tabak.5 We examine the
smoothness affordable by defocusing the beams along one
axis, that is, stretching them along the tangent to the
annulus. Originally it had been thought that this could
ease the requirements on beam quality. This was a con-
sequence of assuming that emittance could be exchanged
between the transverse directions while conserving the 6-
D phase space volume. This is no longer thought to be
the case, though such processes as beam neutralization
are likely to be eased by a reduced beam density.

In the cited work, the semimajor and semiminor axes
are defined so as to contain 95% of the beam. However,
an ellipse defined by semi-axes (a, b) of twice the RMS
lengths contains only about 86% of the particles. Thus,
for comparison with the earlier work we use an ellipse
with semi-axes of 2.44775 times the RMS lengths. An
iteration shows that such an ellipse contains about 95%
of the particles. That is,∫ 2.44775

0
2πre−r

2/2dr∫∞
0

2πre−r2/2dr
= 0.95 (5)

and (xRMS, yRMS) = (a, b)/2.44775. The radius of the
annulus (on the end of the hohlraum) onto which the
beam centroids are aimed is 3.33 mm; there is a beam-
block of radius 2.0 mm, and the radius of the edge of the
target is 5.0 mm.

The intensity of a single elliptical Gaussian beam is:

fe(x, y) = exp

[
−
(

x2

2x2RMS

+
y2

2y2RMS

)]
. (6)

For the 8-beam case of Callahan and Tabak, a=4.15 mm
and b=1.8 mm. The combination of 8 such beams yields
the intensity pattern of Fig. 5.

Callahan and Tabak report that the cosine-mode
asymmetry in mode 8 is -1.6%. To match this, we find
that we have to multiply our result for C8 by π; omitting
that scaling factor, we find the dominant components
to be C8 = −0.0051, C16 = 0.00027, C32 = 0.00043,
S16 = −0.0043, S32 = −0.0015 and the peak-to-valley
variations PTVrim = 0.097 and PTVintegrated = 0.020.

Greater uniformity around the rim may be achieved by
varying the semi-major axis length (a), at the expense



4

FIG. 5. Intensity pattern of 8 elliptical beams, with
a=4.15 mm and b=1.8 mm. The left panel is a “mountain
range” representation, while the right panel is a contour plot.

of a larger mode 8 Fourier component and greater in-
tegrated peak-to-valley nonuniformity. See Fig. 6. For
a=3.14 mm, we find the dominant components to be
C8 = −0.0091, C16 = −0.00005, C32 = 0.00078, S16 =
−0.0078, S32 = −0.0031, and the peak-to-valley varia-
tions PTVrim = 0.00076 and PTVintegrated = 0.037.

When 16 beams are used, excellent uniformity can be
achieved. See Fig. 7. We find the dominant components
to be C16 = 0.00027, S32 = 0.00023, and the peak-to-
valley variations PTVrim = 0.00027 and PTVintegrated =
0.0011.

FIG. 6. Intensity pattern of 8 elliptical beams, with
a=3.14 mm and b=1.8 mm.

FIG. 7. Intensity pattern of 16 elliptical beams, with
a=4.15 mm and b=1.8 mm.

IV. ARC-BASED SMOOTHING CONCEPT

We began by examining the process of locally wobbling
a Gaussian beam back and forth. The first complication
that comes to mind is that, for a harmonic oscillation,
the beam will “spend more time” near its turning points
than it will in mid-oscillation; thus, if the ratio of wobble
amplitude to beam size is sufficiently large, one winds
up with a “two humped” time-averaged distribution (in
some cases, this may be acceptable). For sufficiently
small wobble amplitudes, a single-humped distribution is
obtained, and indeed by tuning the ratio of beam size to
wobble amplitude it is possible to obtain a locally “flat”
distribution (with zero second derivative at its center).

In a one-dimensional realization, the time-averaged
density of the wobbled Gaussian is:

f(x) =

∫ 1

0

exp

[
− [x− wd cos(πt)]2

2d2

]
dt, (7)

where d is the RMS size of the unperturbed Gaussian,
and w (dimensionless) is the wobble amplitude in units
of d. Differentiating twice with respect to x/d yields

f ′′(0) =
1

2
e−

w2

4

[
(w2 − 2)I0

(
w2

4

)
− w2I1

(
w2

4

)]
.

(8)
Requiring f ′′(0) = 0 and solving for the root numerically,
we find a flat-topped profile for w ' 1.7776.

If we then consider the superposition of a set of n such
beams offset from each other by a distance s, we find the
aggregate intensity distribution u(x) to be:

u(x) =

n−1∑
0

f(x− ns) (9)

The results of such a one-dimensional test are shown in
Fig. 8, where the parameters are d = 1, w = 1.75, s = 2.

FIG. 8. One-dimensional example of locally wobbling beams,
with parameters as described in the text. From left to right:
the unperturbed Gaussian, a wobbled Gaussian, a set of five
wobbled Gaussians positioned to overlap, and (on top of the
last of these) one-half the sum of the five wobbled Gaussians.
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It is evident that excellent uniformity can be obtained in
this simple one-dimensional case. Similarly, we examined
two-dimensional Gaussians wobbled linearly and placed
side-by-side, and obtained a uniform linear profile. For
brevity we do not include those results.

To explore the utility of the concept in realistic ge-
ometries, we began by considering “ideal” arc-wobbling,
along perfectly circular arcs. The aiming point traces out
a parametrically-defined path:

For − wd

ra
≤ η ≤ wd

ra
:

x = ra cos(η) (10)

y = ra sin(η)

where wd is the amplitude measured along the arc, η the
path parameter, and ra the arc radius. See Fig. 9.

In order to develop a practical approach, we then con-
sidered two-harmonic wobbling, wherein again the beam
is deflected in the transverse (x, y) plane by RF deflec-
tor fields. However, for a two-harmonic wobbled beam,
the tangential coordinate y oscillates at a base frequency
ω, while the quasi-radial coordinate x oscillates at 2ω.
When the deflections are applied, for each vertical cycle
(up then down) that the beam completes, two horizontal
cycles (left-right-left-right) are completed . The geome-
try is depicted in Fig. 9. In the absence of any deflections,
the beam is aimed at the un-wobbled point that is called
out in the figure. The equations for the aiming point are:

For 0 ≤ t ≤ 1 :

xaim(t) = ra −
h

2
[1 + cos(2πt)] (11)

yaim(t) = −ra sin

(
wd

ra

)
cos(πt)

where h is the sagitta and h/2 is the amplitude of the
“horizontal” wobble:

h = ra

[
1− cos

(
wd

ra

)]
. (12)

As can be seen, the aiming point traces a nearly circu-
lar arc. Furthermore, linearly wobbling the beams (along
the tangent direction at mid-wobble) did not produce
high-quality smoothing. Thus, for the remainder of this
paper we consider only two-harmonic arc wobbling.

V. ARC-BASED SMOOTHING

Choices must be made regarding which parameters are
to be considered inputs, and which derived. We specify
the number of beams, the annulus radius, the ratio of
wobble amplitude to spot size (thus the time-averaged
shape of each wobbled beam), and the ratio of beam sep-
aration to spot size. Thus the focal spot size is, in the
sequel, a derived quantity. The input parameters are:
ra = radius of nominal aiming annulus (set to 3.33 mm)

nb = number of beams
w = ratio of wobble amplitude to spot size d
α = ratio of beam separation s to spot size d.

The principal derived quantities are:
s = 2πra/nb = spacing of beam centers, along arc
∆φ = 2π/nb = angular separation of beam centers
d = s/α = beam focal spot size xRMS.

For efficiency, we approximate the integrals over the
wobble oscillation as discrete sums; tests showed that a
modest number of terms suffices:
m = 16 = number of steps for approximate integrals
δ = 1/m = step size for approximate integrals.

Then, the time-averaged intensity of a single two-
harmonic arc-wobbled Gaussian beam (for the specified
number of final beams) is:

f2h(x, y) = δ

m∑
n=1

exp (13)[
−
{x− xaim[(n− 1

2 )δ]}2 + {y − yaim[(n− 1
2 )δ]}2

2d2

]
For small numbers of beams, it can be advantageous to

use a large wobble amplitude to “fill in the gaps,” even
though this leads to intensity peaks at the ends of the
arcs. Thus, for a four-beam case we choose w = 2.28 and
α = 6. The derived parameters are d = 0.8718 mm and
s = 5.231 mm.

A single two-harmonic arc-wobbled beam, sized as if
there are to be four beams total on the annulus, then has
the time-averaged intensity shown in Fig. 10.

The time-averaged intensity of nb two-harmonic arc-
wobbled beams is:

u2h(x, y) =

nb−1∑
i=1

f2h[x cos(i∆φ) + y sin(i∆φ),

y cos(i∆φ)− x sin(i∆φ)] (14)

For four two-harmonic arc-wobbled beams, and the
parameter choices listed above, this intensity pattern
is shown in Fig. 11. The metrics for this 4-beam
case, which qualitatively resembles the 8-elliptical-beam
case of Fig. 5, are: C4 = 0.0051, C8 = −0.0297,
C12 = −0.0078, C16 = −0.0068, S8 = 0.0024, S12 =
−0.0227, S16 = −0.015, and the peak-to-valley variations
PTVrim = 0.117 and PTVintegrated = 0.16. The illumina-
tion pattern is not as uniform as that of the “standard”
8–elliptical-beam case, but might well be smooth enough
for a distributed-radiator target.

Moving to eight beams, it is advantageous to reduce
the wobble amplitude, and we consider w = 1.75 and
α = 2.0. The derived parameters are d = 1.308 mm
and s = 2.615 mm. The resulting intensity pattern is
shown in Fig. 12.The metrics for this case correspond
to significantly better uniformity than was observed for
either of the 8-elliptical-beam cases presented earlier:
C8 = −0.00006, C12 = −0.00002, C16 = −8.6 × 10−7,
S12 = −0.00005, S16 = −0.00005, and the peak-to-
valley variations PTVrim = 0.00015 and PTVintegrated =
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FIG. 9. (color online) Geometry of arc wobbling (see text).

FIG. 10. (color online) Time-averaged intensity of a single
two-harmonic arc-wobbled beam, one of a set of four.

0.00024. These values are smaller than those observed
for the case of 16 elliptical beams.

VI. DISCUSSION

In this work we have made a number of assumptions.
The beams are aimed down the surface of a (virtual) cone
so that their focal spots fall on a circular annular ring.
The final-focusing elements are far enough upstream that
the beams can be assumed to change direction only in-
significantly as they are wobbled (this is generally a good
approximation). The cone angle has been assumed to be
very small; indeed, these studies are carried out in the

FIG. 11. (color online) The time-averaged intensity of a set
of four two-harmonic arc-wobbled beams.

limit of zero cone angle, that is, a circular cylinder. The
surface on which the intensity is calculated is planar and
normal to both the cone axis and the nominal axes of
each of the beams (i.e., the non-wobbled axes). None of
these simplifications is fundamental; any or all could be
relaxed. We proceed to discuss these assumptions in the
context of a number of target classes.

For planar targets intended for basic science studies,
and for studies of ion-driven ablation for heavy-ion fu-
sion, there is likely to be little advantage to the arc-
wobbled approach, since typically a single beam is needed
and, if necessary, a full-circle wobbler could be used.

For indirect-drive distributed-radiator targets, the as-
sumption of a planar target surface is likely to be reason-
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FIG. 12. (color online) The time-averaged intensity of a set
of eight two-harmonic arc-wobbled beams.

able. Some correction due to the finite cone angle µcone is
called for, since the target surface is normal to the cone
axis but not to any beam”s nominal axis. In general,
for modest wobble amplitudes, this geometry will have a
minimal effect on the oscillatory motion along the y coor-
dinate in Fig. 9, but will effectively “stretch” the ampli-
tude of the oscillation in x from h/2 to h/[2 cos(µcone)].
A straightforward correction that yields a nearly circu-
lar arc on the target surface can be obtained by simply
reducing, by a factor cos(µcone), the strength of the field
that induces the x component of the wobble.

For the X-target, the target surface may or may not
be normal to the beams’ nominal axes. A canted target,
as depicted in Fig. 3, would allow normal incidence. As
noted above, such a target requires additional focusing of
the igniter beams, and this geometry precludes full-circle
beam wobbling.

For spherical direct-drive targets, a distinction must be
made between two cases. Kawata et al.17 consider a mod-
ified Platonic-solid configuration, with 32 beams directed
radially onto the face-centers and vertices of an icosahe-
dron (case a, below). In contrast, Runge and Logan10

consider a polar direct drive geometry with beams com-
ing in on cones, as assumed in this paper (case b).
(a) For modified Platonic solid geometry; the un-wobbled
beam centroids are normally incident, but the wobbled
beam centroids are not. Here, full-rotation wobbling is
an attractive approach. However, Kawata has recently
described an issue with “imprinting” of early-time depo-
sition nonuniformities, because the wobbled beams are
aimed away from the on-target locations of optimal sym-
metry when the pulse starts. He has shown that this can
be addressed by ramping up the wobbler amplitude (thus
“spiraling out” the beam) over about two full rotations12.
We conjecture that a more gradual ramping-up of the in-
tensity might also be a useful mitigation technique.

(b) For polar direct drive geometry, the target surface
may be normal to the nominal axes of the beams on
one cone. However, in general, it will not be normal
to the nominal axes of beams on other cones. Runge and
Logan show how full-rotation wobbling can smooth the
time-averaged intensity very effectively. However, they
assume very rapid wobbling and consider only the in-
tegrated intensity; as Kawata notes, wobbled beams at
early time will not be aimed so as to preserve the de-
gree of symmetry inherent in the nominal (un-wobbled)
aiming. Here, the arc-wobbled approach may offer an
advantage, since the beams on all rings may be wobbled
in synchronicity, preserving the same symmetry as that
of the nominal aiming, only rotated (and with a slightly
greater degree of non-normal incidence). To the extent
that the points on the spherical target surface remain
equidistant from the beam source as the beam travels on
its arc, the equations governing that arc are unchanged
from those derived herein. As mentioned earlier, “zoom-
ing” of the beam pointing is an attractive possibility.

In comparison with the full-rotation wobbler, the arc-
wobbled approach, in general, involves smaller beam
displacements, reducing the necessary applied deflecting
fields by a modest factor along one axis, and by a sub-
stantial factor along the other. This effect is larger for
greater numbers of beams.

In this work we have not attempted to model beam
energy deposition into targets, including the effects of
grazing incidence and beam “spill” over the target edge,
because of the multiplicity of possible target geometries
to which the technique might be applied. Similarly we
have not addressed the influence of beam wobbling on
implosion symmetry and Rayleigh-Taylor growth in tar-
gets. The full-rotation wobbler approach has been shown
to have a stabilizing effect on Rayleigh-Taylor instability
by oscillating the driving term. The reader is referred to
Refs. 7–13 and 17 for work that bears on these issues. We
may anticipate a qualitatively similar (but quantitatively
different) benefit from arc-wobbling the beams.
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